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Abstract

The global e�ect of Covid19 and inadquacy of literature dealing with determin-
istic mathematical model on preventive measures on the transmisson dynamics
of the disease is an exuding factor of endemicity in human population. Thus,this
study focus on the formulaton of a new deterministic model incorperated with
control measures for combating the transmission of the disease. It is shown
that the model exhibit forward bifurcation,hence,the epidemiological require-
ment Ro≺ 1,is a neccessary and su�cient condition for the ellimination of the
disease.The local and asymptotic stability of the endemic equilibrium point is
investigated.Furthermore,it is shown that the disease free equilibrium is glob-
aly asymptotically stable.Numerical simulation of the model suggest that high
value of administered control measures without strict compliance (ρ = 90%) to
control measures is not a su�cent condition for the ellimination of COVID19.

Keywords: Forward Bifurcation, Isolaton E�ect E�ect , Global Asymptotc
stabilitystrategies

1. Introduction

Deterministic mathematical models have been widely used to ascertain the
spread and control of emerging and re-emerging human disease dating back to
the of Bernoulli in 1760 and the likes of Ross, Kermacack and Mckendrick[21,
22]. The dynamics of these models is determined by the threshold quantity
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R0 called the basic reproduction number. Which ascertain the number of new
cases an index case can generate in a completely susceptible population[21].The
phenomenon ,where the disease-free equilibrium loses its stability and a stable
endemic equilibrium appears as Roincreases through one,is known as forward
bi- furcation [23]. It is imperative to provide some background information
on the burden of COVID-19. COVID-19 a viral infectious disease,declared by
the WHO as a pandemic[1],is caused by a new type of coronavirus formely
called 2019-nCOV by the WHO. It is the seventh member of the coronavirus
family together with MERS-nCOV and SAR-nCOV,that can spread to human
[2]. Despite concerted e ort by the government, WHO and international health
organizations,COVID-19 still main- tains its exuding e ect to human popula-
tion.An estimate of 634,835 infected in- dividuals with 29891 death cases was
reported by the world health organization as of march 2020[3]. The symptoms
of the infection include fever,cough,shortness of breath and diarrhea. In more
severe cases,COVID-19 can cause pneumonia and even death[4]. There is no
cure for COVID-19 for the moment but strict compliance to control measures
can prevent its attenuating e ect on the human population. Several attempt
has been made to study the transmission dynamics of COVID- 19. For example
Moore et al used a deterministic mathematical model to present control strate-
gies[5]. S. Zhang et al ,estimated the reproduction number of COVID-19 and the
probable size on the diamond princess cruise ship[6]. The objective of this study
is to design a new deterministic mathemati- cal model that assess the impact
of preventive measures in the transmission dynamics of COVID-19.The result-
ing deterministic system of nonlinear di er- ential equations will be rigorously
analysed to gain insight into the dynamical features.

2. MODEL FORMULATION

The total population of Nigeria at time t, denoted by N(t) is divided into
the mutually exclusive compartments of infectious individuals who are unware
of their covit 19 status (Iu), infectious individuals who are aware of their COVIT
19 status(Ia), susceptible individuals (S), Suceptible individuals that observed
isolation (Si), infectious individuals that refuse to be quarantine (Ir), infec-
tious individuals that comply to be quarantine (Ii), infectious individuals who
recovers from COVIT 19 (R). The total population becomes:

N(t) = S + Si + Iu + Ia + Ir + Ii +R.

The population of susceptible individuals is sourced by birth of children at
rate Λ. Susceptible individuals acquires infection at a rate λt and adhere to
quarantining at a rate σi. The population is further diminished by natural
mortality at a rate µ. Thus , the di�erential compartment of the susceptible
class will be

dS

dt
= Λ− µS − λtS − σiS.
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The population of isolated susceptible individuals got their from susceptible
individuals who adhere to quarantine measures at a rate σi, despite lockdown,
it was assumed that a fraction of the isolated susceptible individuals left their
isolated zone (for greener pasture) and interacted with infected individuals who
are unware of their COVIT 19 status at a rate σmi. The population su�er from
natural death a rate µ.

dSi
dt

= σiS − µSi − σmiSi

The population of infectious individuals who are unware of their COVIT 19
status is generated following the infection acquired by susceptible individuals.
The population is increase by isolated susceptible individuals who interacted
with unware infectious COVIT 19 individuals. Individuals in the class comply
to testing (to know their COVIT 19 status) at a rate αt. I t was observed that
individuals with strong immune system recovers from the disease at rate τu. The
population is further decreased by natural death at rate µ. So that

dIu
dt

= λtS − µIu + σmiSi − αtIu − τuIu.

The population of infectious individual who are aware thier COVIT 19 status
is sourced from unware COVIT 19 infectious individual who comply to testing.
Individuals in this class were admitted to isolation centre at rate αi. It was
observed that some of this individuals recovers from the disease at a rate τa.
Individuals su�ers from natural death at rate µ. So that

dIa
dt

= αtIu − µIa − αiIa − τaIa

The population of infectious individuals who refuse to be quarantine for
COVIT 19, got its recruitment from isolated infectious individuals , where 0 <
ρ < 1,compliance rate of isolation from infectious COVIT19 individuals. The
population su�ers from natural death and recovers from the disease at a rate of
µ and τr. So that

dIr
dt

= (1− ρ)αiIa − µIr − τrIr

The population of Isolated individauls is sourced from infectious COVIT 19
individuals who accepted isolation. The population su�ers from natural death
and recovers from the disease at µ and τi respectively. So that

dIi
dt

= ραiIa − µIi − τiIi

The population of infectious individuals who recovers from the disease is
sourced from the respective recovery rate of each infectious class. The popula-
tion su�er from natural mortality at a rate µ. So that

dR

dt
= τuIu + τaIa + τrIr + τiIi − µR.
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Table 1: Description of state variable

Variable Interpretation

S Susceptible individuals
Si Susceptible isolated individuals
Iu Infectious individuals who are unaware of their COVIT 19 status
Ia Infectious individuals who are aware of their COVIT 19 status
Ir population of infectious individuals who refuse isolation
Ii population of isolated infectious individuals
R Population of infectious individual that recover from the COVIT 19

Table 2: Description of the variables and parameters of the model (1)

Parameter Interpretation

Λ Recruitment rate
µ Natural mortality rate
σi Rate of isolated susceptible individuals
σmi Rate of interaction of isolated susceptible inviduals
αt Compliance to testing parameter
αi Compliance to isolation parameter
τu Recovery rate on uninformed infectious individuals
τa Recovery rate on informed infectious individuals
τi Recovery rate on informed isolated infectious individuals
ρ Compliance rate of informed infectious individauls
θi Modi�cation Parameter accounting for the reduction of COVIT 19 .
κ Risk of infectioneous among uninformed infected individuals
ηa Modi�cation parameter of risk of infectioneous among informed infected individuals

Where

λt =
β(1− ϑ) [Iu + ηaIa + κIr + θiIi]

N

Observing the de�nition and assumptions above ,the deterministic model
of the transmission dynamics of COVIT 19 is represented by the non-linear
di�erential equations.

dS

dt
= Λ− µS − λtS − σiS.

dSi
dt

= σiS − µSi − σmiSi

dIu
dt

= λtS − µIu + σmiSi − αtIu − τuIu. (1)

dIa
dt

= αtIu − µIa − αiIa − τaIa
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dIr
dt

= (1− ρ)αiIa − µIr − τrIr

dIi
dt

= ραiIa − µIi − τiIi

dR

dt
= τuIu + τaIa + τrIr + τiIi − µR.

N(t) = S + Si + Iu + Ia + Ir + Ii +R.

Where

λt =
β(1− ϑ) [Iu + ηaIa + κIr + θiIi]

N

3. Basic properties

3.1. Boundedness of solution

The model (1) to be well posed it must satisfy the Lassalle's invariance
principle which state that the solutions of the model (1) with positive initial
data will remain positive for all t ≥ 0. This is achieved below.

Lemma 1. The region

Ω =

{
(S, Si, Iu, Ia, Ir, Ii, R)εR7:

+ : N ≤
�
µ

}
is positively invariant for the model (1).

Proof. Adding the equations in the model (1) gives

dN

dt
= Λ− µN. (2)

Hence , whenever N > Λ
µ , then

dN
dt < 0. Thus,It follows from the right

hand side of the inequality (2.1) that dN
dt is bounded by Λ − µN , a standard

comparison theorem [1]can be used to show that

N(t) ≤ N(0)e−µt +
Λ

µ
(1− e−µt).

If N (0) ≤ Λ
µ , then N(t) ≤ Λ

µ . Thus, Ω is a positively-invariant set under

the �ow described by model(1) so that no solution path leaves through any
boundary of Ω . Hence it is su�ecient to consider the dynamics of the model
in Ω. In this region the model can be considered as been epidemiologically and
mathematically well-posed [2].
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3.2 Asymptptotic stability of Disease free Equilibrium (DFE) 6

3.2. Asymptptotic stability of Disease free Equilibrium (DFE)

The DFE of the model(1) is given by

Π0 = (S∗∗, S∗∗
i , I

∗∗
u , I∗∗a , I∗∗r , I∗∗i , R∗∗) = ((S∗∗, S∗∗

i , 0, 0, 0, 0, 0)

where

S∗∗ =
Λ

µ+ σi
S∗∗
i =

Λσi
(µ+ σi)(µ+ σmi)

.

The local stability of Π0 can be established using the next generation op-
erator method on (1)[3, 4] using the notation in [4],it follows that the matrices
F and V ,for the new infection terms and the remaining transfer terms are ,re-
spectively ,given by

V =


k1 0 0 0
−αt k2 0 0

0 − (1− ρ)αi k3 0
0 −ραi 0 k4

 and F =


β βηa βκ βθi
0 0 0 0
0 0 0 0
0 0 0 0


where k1 = µ+ αt + τu k2 = µ+ αi + τa k3 = µ+ τr k4 = µ+ τi. Hence , it

follows from [4] that

Rc =
β[k3k4(k2 + ηaαt) + (κ(1− ρ)k4 + θiρk3)αtαi

k1k2k3k4

Lemma 2. The DFE of (Π0) of the model (1) is locally asymptotically stable
if Rc < 1,and unstable if Rc > 1.

The threshold quantity Rc is the e�ective reproduction number of COVIT
19 [5, 2]. It represent the average number of secondary cases generated by a
single infectious individual. The epidemiological implication of lemma2

is that when the threshold parameter is less than unity, a pertubation from
the COVIT 19 infectious individual will not generated large outbreaks, and the
disease goes into extinction.

3.3. Global asymptotic stability of DFE

Theorem 3. The disease free equilibrium of the model is globally aymptotically
stable in Ω whenever Rc ≤ 1.

Proof. Consider the Lyapunov function

L = ζ1Iu + ζ1Ia + ζ1Ir + Ii.

where ζi is the coe�cient of infectiousness.A thorough algebraic exercise gave
the coe�cient of infectiounes as follows

ζ1 =
R0k4

β

ζ1 =
k4

θi
[
ηa
k2

+
(1− ρ)αiκ

k2k3
+
θiραi
k2k4

] (3)
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3.4 Existence and stability of endemic equilibrium point 7

ζ3 =
κk4

θik3

˙L =ζ1İu + ζ1İa + ζ1İr + İi. (4)

A thorough algebraic simpli�cation when the (2.2) is observed in (2.3) gives

L̇ ≤ k4

θi
(R0 − 1) [Iu + ηaIa + κIr + θiIi].

Hence,the derivative of the Lyapunov function is less than zero whenever
the threshold parameter is less than equal one and all parameters and variables
of the model are non-negative, i� all the infectious class in model (1) equal
zero. It follows from Lasalle's invariance principle ,that every solution to the
equations in model(1) with initial conditions in Ω converges to Π0 as t → ∞.
The epidemiological implication is that if the quarantine and isolation measures
are implemented such that its brings the threshold parameter below one then
COVIT 19 will be elliminated in Nigeria.

3.4. Existence and stability of endemic equilibrium point

In this secttion,the case of model(1) where at least one of the infected vari-
ables of the model (1) is non-zero shall be considered. This is attainable by
solving model (1) at the endemic steady state. This is attainable as follows

S∗∗ =
Λ

(µ+ σi + λt)

S∗∗
i =

σiλt
(µ+ σmi)(µ+ σi + λt)

I∗∗u =
1

k1
[

σmiσiΛ

(µ+ σmi)(µ+ σi + λt)
+

λtΛ

(µ+ σi + λt)
]

I∗∗a =
αt
k1k2

[
σmiσiΛ

(µ+ σmi)(µ+ σi + λt)
+

λtΛ

(µ+ σi + λt)
]

I∗∗r =
(1− ρ)αiαt
k1k2k3

[
σmiσiΛ

(µ+ σmi)(µ+ σi + λt)
+

λtΛ

(µ+ σi + λt)
]

I∗∗r =
ραiαt
k1k2k4

[
σmiσiΛ

(µ+ σmi)(µ+ σi + λt)
+

λtΛ

(µ+ σi + λt)
]

Much rigourous algebraic exercise gives

λ∗∗t − (1−R0)A+ σmiσi = 0 (5)

where

A =
1

(k3k4(k2 + ηaαt) + (κ(1− ρ)k4 + θiρk3)αtαi)(k3k4k2 + k3k4αt + k4αtαi + ρk4αtαi)
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3.4 Existence and stability of endemic equilibrium point 8

It is obvious that the linear sytem (2.4) has a unique positive solution when-
ever R0 ≥ 1 and A > σmiσi > 0.

Theorem 4. The endemic equilibrium of the model is locally asymptotically
stable if |1 +R0| > 1.

Proof. Recall from (2.1) that

dN

dt
= Λ− µN.

So that N → Λ
µ=N

∗∗ as t→∞. Hence,using the substitution

S = N∗∗ − (Iu, Ia, Ir, Ii)

where . The model(1), can be rewritten as

dIu
dt

= N∗∗−1

[β(1− ϑ)(Iu + ηaIa + κIr + θiIi)][(N
∗∗ − (Iu, Ia, Ir, Ii)]− k1Iu.

(6)

dIa
dt

= αtIu − k2Ia

dIr
dt

= (1− ρ)αiIa − k3Ir

dIi
dt

= ραiIa − k4Ii

Linearizing the model (2.2) around the endemic equilibrium point gives

dIu
dt

= [(x2 − x1)− k1]Iu + (ηax2 − x1) Ia + (κx2 − x1)Ir + (θix2 − x1)

dIa
dt

= αtIu − k2Ia

dIr
dt

= (1− ρ)αiIa − k3Ir (7)

dIi
dt

= ραiIa − k4Ii

where

x1 =
β(1− ϑ) [Iu + ηaIa + κIr + θiIi]

N

x2 =
βS∗∗

N
.
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3.4 Existence and stability of endemic equilibrium point 9

The jacobian of the system evaluated at the EEP is given by

J =


(x2 − x1)− k1 (ηax2 − x1) (κx2 − x1) (θix2 − x1)

αt −k2 0 0
0 (1− ρ)αi k3 0
0 ραi 0 k4


It is imperative to show that system (2.3) has no solution of the form :

P (t) = P0e
ωt (8)

where P0 = (P1, P2, P3, P4) and ω, P0εC. Substitue the solution (2.4) into
(2.3) gives

ωP1 = [(x2 − x1)− k1]P1 + (ηax2 − x1)P2 + (κx2 − x1)P3 + (θix2 − x1)P4

ωP2 = αtP1 − k2P2

ωP3 = αtP2 − k3P3 (9)

ωP4 = αtP3 − k4P4

Thorough algebraic simpli�cation of system (2.5) gives the following system

[1 + F1 (ω)]P1 = (HP )1

[1 + F2 (ω)]P2 = (HP )2

[1 + F3 (ω)]P3 = (HP )3 (10)

[1 + F4 (ω)]P4 = (HP )4

where

F1 (ω) =
ω

k1
+
x1

k1
(1 +

αt
k2 + ω

+
(1− ρ)αiαt

(k2 + ω)(k3 + ω)
+

ραiαt
(k4 + ω)(k2 + ω)

)

F2 (ω) =
ω

k2

F3 (ω) =
ω

k3
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3.4 Existence and stability of endemic equilibrium point 10

F4 (ω) =
ω

k4

H =


x2

k1

ηax2

k1

(1−ρ)αiκx2

k1

x2αiρθi
k1

αt

k2
0 0 0

0 (1−ρ)αi

k3
0 0

0 ραi

k4
0 0


If P is a solution of (2.6) thenit is possible to �nd a minimal positive real

number (φ),such that ‖P‖≤ φΨE .It is important to state that H becomes stable
if Re (ω) < 0. Assume by contradiction that Re (ω) ≥ 0. There are two cases
to consider .

Case 1

For the case ω = 0,equation (2.6) becomes a homogeneous linear system in
the variables of P . The determinant of the system is given by

∆c =

It follows that system (2.6)has a unique solution given by P = 0 and this
solution correspond to the DFE ,since the determinant of the system (2.6) is
negative whenever Rc >1, and trivial whenever Rc = 1.

Case 2

Consider the case Re (ω) > 0 (by assumption), then |1 + Pi(ω)| > 1. Let
P (ω) = mini |1 + Pi|,then P (ω) > 1 and φ

P (ω) < φ. Since φ is a minimal

positive real number such that ‖P‖ ≤ φΨE , then

‖P‖ > φΨE

P (ω)
< φ (11)

On the reverse , by taking the norm of both sides of the second equation
(2.4), we have

P (ω) ‖P2‖ ≤ |1 + P2(ω)| ‖P2‖

= ‖(HP )2‖ ≤ H ‖P2‖ ≤ φH (ΨE)2

= (ΨE)2 − φI
∗∗
a (12)

It implies that (2.8) contradicts (2.7). Hence Re (ω) < 0. Thus,all eigen-
values of the characteristics equation associated with the linearized system will
have a negative real part, so that the unique endemic equilibrium, ΨE is locally
asymptotically stable . The epidemiological implication of the theorem (1) is
that COVIT 19 will persist in the population if Rc > 1.
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3.5 Global stability of endemic equilibrium point. 11

3.5. Global stability of endemic equilibrium point.

Consider the force of infection in its explosive state

λt =
β(1− ϑ) [Iu + ηaIa + κIr + θiIi]

N

were all mo�cation parameter equal one i.e ηa = θi = κ = 1. The epidemi-
ological implication is that infectious individuals with low response to isolation
and quarantine measures do not modify their behaviour for the spread of the
disease.

Lemma 5. The region Ω = {(S, Si, Iu, Ia, Ir, Ii, R)εS(t) ≤ S∗∗} is positively
invariant and attracting for model (1).

Proof. Omitted

Theorem 6. Consider the model (1). The associated unique endemic equiiib-
rium of the model is GAS in Ω∗∗/Ω if the threshold parameter is observed for
all modi�cation parameters equal one and S < S∗∗.

Proof. Consider the following non-linear Lyapunov function (Goh-Volterra type):

F = S−S∗∗−S∗∗In

(
S

S∗∗

)
+Si−S∗∗

i −S∗∗
i In

(
Si
S∗∗
i

)
+Iu−I∗∗u −I∗∗u In

(
Iu
I∗∗u

)
+

(
βS

k2
+
βS(1− ρ)αi

k2k3
+
βSραi
k2k4

)(Ia−I∗∗a −I∗∗a In

(
Ia
I∗∗a

)
)+
βS

k3
(Ir−I∗∗r −I∗∗r In

(
Ir
I∗∗r

)
)

(13)

βS

k4
(Ii − I∗∗i − I∗∗i In

(
Ii
I∗∗i

)
).

With Lyapunov derivatives ,

Ḟ = Ṡ−S
∗∗

S
Ṡ+Ṡi−

S∗∗
i

Si
Ṡi+İu−

I∗∗u
Iu
İu+(

βS

k2
+
βS(1− ρ)αi

k2k3
+
βSραi
k2k4

) ˙(Ia−
I∗∗a
Ia
İa)

βS

k3

˙(Ir −
I∗∗r
Ir
İr) +

˙βS

k4
(Ii −

I∗∗i
Ii
İi). (14)

At steady state of model , it can be shown that

Λ = µS∗∗ − λtS∗∗ − σiS∗∗.

K1I
∗∗
u = λtS

∗∗ + σmiS
∗∗
i
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3.5 Global stability of endemic equilibrium point. 12

K2I
∗∗
a = αtI

∗∗
u (15)

K3I
∗∗
r = (1− ρ)αiI

∗∗
a

K4I
∗∗
i = ραiI

∗∗
a .

Next, observe the derivatives of the infectious class in (1) and the steady
state in (2.14) into (2.12),gives

Ḟ = µS∗∗(2− S∗∗

S
− S

S∗∗ ) + µS∗∗
i (2− S∗∗

i

Si
− Si
S∗∗
i

) + σiS
∗∗(2− S∗∗

S
− S∗∗

i

Si

S

S∗∗ )

BS∗∗I∗∗a (2− S∗∗

S
− I∗∗a

Ia

Iu
I∗∗u

)

BS∗∗I∗∗r (3−S
∗∗

S
−I

∗∗
a

Ia

Iu
I∗∗u
−I

∗∗
r

Ir

Ia
I∗∗u

)+BS∗∗I∗∗i (4−S
∗∗

S
−I

∗∗
a

Ia

Iu
I∗∗u
−I

∗∗
i

Ii

Ia
I∗∗a
−I

∗∗
u

Iu

Ii
I∗∗i

)

Since the arithmetic mean exceeds the geometric mean , the following in-
equalities hold:

2− S∗∗

S
− S

S∗∗ ≤ 0 2− S∗∗
i

Si
− Si
S∗∗
i

≤ 0,

2− S∗∗

S
− I∗∗a

Ia

Iu
I∗∗u
≤ 0,

3− S∗∗

S
− S∗∗

i

Si

S

S∗∗ ≤ 0, 3− S∗∗

S
− I∗∗a

Ia

Iu
I∗∗u
− I∗∗r

Ir

Ia
I∗∗u
≤ 0,

4− S∗∗

S
− I∗∗a

Ia

Iu
I∗∗u
− I∗∗i

Ii

Ia
I∗∗a
− I∗∗u

Iu

Ii
I∗∗i
≤ 0.

Thus Ḟ ≤ 0 for Rc/mofidicationparameters=1 > 1. Hence , F is a Lyapunov
function. It follows by lasalles invariance principle that every solution to the
equation of the model (1) approaches the associated unique endemic equilibrium
of the model as t→∞for Rc > 1.

Isolotation and testing e�ect with 80% compliance rate
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3.5 Global stability of endemic equilibrium point. 13

Table 3: Values of Parameters used for simulation
Parameter Nominal value Reference

β 0.45 Estimimated
µ 0.001 Estimimated
σi 0.05 Estimimated
σmi 0.03 Estimimated
αt 0.06 Estimimated
αi 0.6 Estimimated
τu 0.014 Estimimated
τa 0.013 Estimimated
τi 0.016 Estimimated
ρ (0,1] Estimimated
θi 0.014 Estimimated
κ 0.7 Estimimated
ηa 0.01 Estimimated

Table 4: Threshold Values in the absence of control measures
Case of reproduction number Reproduction number % of transmission

With control parameters 0.5802 1.000
Without control parameter 1.1353 1.959

Total 1.7155 2.959

Consider the case of model(1) without control measures. Table 3, gives the
outcome of the reproduction number when the contact rate is �xed at f 0.5. It
is established that the epidemiological requirement of the threshold parameter is
not satis�ed for the ellimination of Covid19. Thus, the need of control measures
is imperative for combating the disease.Next,observed the reproduction number
with control parameters.

Table 5: Isolotation and testing e�ect on transmission of COVID 19

αi αt Rc

0.45 0.5 1.16275
0.65 0.8 1.22718
0.811 0.9 1.284

When β = 0.45, ρ = 0.5(50%), its infer from table 4,high values of isolation
and testing parameter will not attenuate the infection number at the observed
compliance rate.The contour plot below display the dynamics of the infection
at high values of administered control parameter.
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3.5 Global stability of endemic equilibrium point. 14

Contour plot of reproducton number wth low compliance rate.

Figure 1:

Table 6: Isolotation and testing e�ect with 80% compliance rate

αi αt Rc

0.45 0.5 0.812293
0.65 0.8 1.22718
0.811 0.9 1.284

When β = 0.45, ρ = 0.8(80%).Same values of control parameters as de�ne in
Fig(3.1),attenuate the infection number at the observed compliance rate.The
contour plotbelow display the dynamics of the infection at high values of ad-
ministered control parameter.It is therefore imperative to state that high values
of administered control parameters (isolation and testing) is only a neccessary
but never a su�cient condition for the ellimination of COVID-19. The epi-
demiological implication is that strict monitoring to the alderance of control
measures must be employed for e�ective combat of COVID-19. As display in
the contour plot(Figure 3.2),the threshold parameter for the transmission of the
disease is less than one.
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3.5 Global stability of endemic equilibrium point. 15

Contour plot of reproducton number wth high compliance rate.

Figure 2:
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3.5 Global stability of endemic equilibrium point. 16

Dynamics Of Infected Population With Low Compliance Rate.

Figure 3:

From the plot dynamics above(Fig.3.7),the disease burden associated with infec-
tious individuals who are aware their COVID-19 status have a low response for
the transmission of the disease than its counter part. Thus, testing as a control
measure is indespensable in curtailing COVID-19.β = 0.45,αt = 0.02(98.0%).
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3.5 Global stability of endemic equilibrium point. 17

Dynamics Of Infected Population With High Compliance Rate.
Fig3.4.β = 0.45,αt = 0.04,αi = 0.01,ρ =

0.001.
High level of administered control strategies with strict compliance to isola-
tion,reduces the endemic equilibrium point as de�ned in �g3.4.
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3.5 Global stability of endemic equilibrium point. 18

Cummulative Incidence Plot

Figure 4: β = 0.45,αt = 0.04,αi = 0.01,ρ =

0.001
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